0 A combinatorial characterization of second category subsets of X ω

نویسنده

  • Apoloniusz Tyszka
چکیده

Let 2 ≤ cardX < ω and X is equipped with discrete topology. We prove that S ⊆ X is of second category if and only if for each f : ω → ⋃ n∈ω X n there exists a sequence {an}n∈ω belonging to S such that for infinitely many i ∈ ω the infinite sequence {ai+n}n∈ω extends the finite sequence f(i). Theorem 1 yields information about sets S ⊆ X with the following property (2): (2) for each infinite J ⊆ ω and each f : J → ⋃ n∈ω X n there exists a sequence {an}n∈ω belonging to S such that for infinitely many i ∈ J the infinite sequence {ai+n}n∈ω extends the finite sequence f(i). Theorem 1. Assume that 2 ≤ cardX < ω and X is equipped with discrete topology. We claim that if S ⊆ X is of second category then S has the property (2). Proof. Let us fix f : J → ⋃ n∈ω X . Let Sk(f) (k ∈ ω) denote the set of all sequences {an}n∈ω belonging to X ω with the property that there exists i ∈ J such that i > k and the infinite sequence {ai+n}n∈ω extends Mathematics Subject Classification 2000. Primary: 03E05, 54E52.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A combinatorial characterization of second category subsets of the

We prove that S ⊆ {0, 1} is of second category if and only if for each f : ω → ⋃ n∈ω{0, 1} n there exists a sequence {an}n∈ω belonging to S such that for infinitely many i ∈ ω the infinite sequence {ai+n}n∈ω extends the finite sequence f(i). Let M denote the ideal of first category subsets of R. Let M({0, 1}) denote the ideal of first category subsets of the Cantor discontinuum {0, 1}. Obviousl...

متن کامل

0 N ov 1 99 9 A new combinatorial characterization of the minimal cardinality of a subset of R which is not of first category

Let M denote the ideal of first category subsets of R. We prove that min{card X : X ⊆ R,X 6∈ M} is the smallest cardinality of a family S ⊆ {0, 1} with the property that for each f : ω −→ ⋃ n∈ω{0, 1} n there exists a sequence {an}n∈ω belonging to S such that for infinitely many i ∈ ω the infinite sequence {ai+n}n∈ω extends the finite sequence f(i). We inform that S ⊆ {0, 1} is not of first cate...

متن کامل

Minimal Hyperspace Actions of Homeomorphism Groups of H-homogeneous Spaces

Let X be a h-homogeneous zero-dimensional compact Hausdorff space, i.e. X is a Stone dual of a homogeneous Boolean algebra. Using the dual Ramsey theorem and a detailed combinatorial analysis of what we call stable collections of subsets of a finite set, we obtain a complete list of the minimal sub-systems of the compact dynamical system (Exp(Exp(X)), Homeo(X)), where Exp(X) stands for the hype...

متن کامل

On the structure of measurable filters on a countable set

A combinatorial characterization of measurable filters on a countable set is found. We apply it to the problem of measurability of the intersection of nonmeasurable filters. The goal of this paper is to characterize measurable filters on the set of natural numbers. In section 1 we introduce basic notions, in section 2 we find a combinatorial characterization of measurable filters, in section 3 ...

متن کامل

Mathematical Logic III The Joy of Sets § 3 . 0 - § 3 . 5

Also, for any two ordinals X,Y either X ∈ Y or Y ∈ X. As we saw before with ordinals ∈ is simply < or ⊂. Every well-ordered set is isomorphic to an ordinal. The first ordinal is 0, the second 1 = {0}, . . . the n’th ordinal is {0, 1, 2, . . . ,n − 1}. The first infintite ordinal is ω = {0, 1, 2, . . . , n, n + 1, . . .}. The second infinite ordinal is ω + 1 = {0, 1, . . . , n, . . . , ω}. In ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000